- Introducing Mahout
- Recommendations
- First Recommender Engine
- Preference data
- PreferenceArray
- FastMap: Implementation of Map
- FastByIDMap
- FastIDSet
- DataModel
- GenericDataModel
- FileDataModel
- MySQLJDBCDataModel
- Generating Recommendations for Boolean data sets
- Item Similarity Vs User similarity
- User similarity
- CityBlockSimilarity : Compute User similarity
- EuclideanDistanceSimilarity
- PearsonCorrelationSimilarity : Compute User similarity
- SpearmanCorrelationSimilarity : Compute User similarity
- LogLikelihoodSimilarity : Compute User similarity
- CachingUserSimilarity: Compute User similarity
- UncenteredCosineSimilarity: Compute User similarity
- TanimotoCoefficientSimilarity: Compute User similarity
- Item similarity
- CityBlockSimilarity: Compute item similarity
- EuclideanDistanceSimilarity : Compute item similarity
- PearsonCorrelationSimilarity : Compute item similarity
- LogLikelihoodSimilarity : Compute item similarity
- UncenteredCosineSimilarity : Compute item similarity
- TanimotoCoefficientSimilarity : Compute item similarity
- CachingItemSimilarity : Compute item similarity
- UserNeighborhood
- NearestNUserNeighborhood
- ThresholdUserNeighborhood
- Recommender interface
- GenericUserBasedRecommender
- GenericBooleanPrefUserBasedRecommender
- SlopeOneRecommender
- CachingRecommender
- GenericItemBasedRecommender
- GenericBooleanPrefItemBasedRecommender
- ItemAverageRecommender
- ItemUserAverageRecommender
- SVDRecommender
- KnnItemBasedRecommender
- Cluster based recommendations
This blog is primarily focus on Java fundamentals and the libraries built on top of Java programming language. Most of the post are example oriented, hope you have fun in reading my blog....:)
Sunday 16 August 2015
mahout tutorial
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment