Tuesday, 15 September 2015

Mahout: CachingRecommender

CachingRecommender is used to cache results of other recommender.

Let’s say I had following input data.

Book id
Title
1
Meet Big Brother
2
Explore the Universe
3
Memoir as metafiction
4
A child-soldier's story
5
Wicked good fun
6
The 60s kids classic
7
A short-form master
8
Go down the rabbit hole
9
Unseated a president
10
An Irish-American Memoir

User id
Name
1
Hari Krishna Gurram
2
Gopi Battu
3
Rama Krishna Gurram
4
Sudheer Ganji
5
Kiran Darsi
6
Joel Chelli
7
Sankalp Dubey
8
Sunil Kumar
9
Janaki Sriram
10
Phalgun Garimella
11
Reshmi George
12
Sailaja Navakotla
13
Aravind Phaneendra
14
Keerthi Shetty
15
Sujatha
16
Vadiraj Kulakarni
17
Arpan
18
Suprabath Bisoi
19
Sravani
20
Gireesh Amara

Following csv file contains customers purchages and their ratings on books.


customer.csv
1,1,3
1,2,1
1,4,5
1,5,3
1,9,3
1,10,2
2,1,2
2,3,2
2,4,1
2,7,5
3,1,5
3,2,1
3,3,1
3,6,1
3,8,1
4,1,1
4,2,1
4,6,3
4,7,1
4,9,2
5,2,1
5,3,3
5,6,5
5,10,3
6,1,1
6,2,4
6,3,4
6,7,2
6,8,3
7,1,3
7,2,3
7,3,1
7,5,3
7,6,3
7,7,3
8,1,1
8,3,3
8,4,5
8,8,1
8,9,2
9,4,2
9,6,5
9,8,3
9,9,3
10,2,5
10,3,1
10,4,2
10,5,1
10,9,4
11,2,3
11,4,2
11,5,2
11,8,1
12,1,1
12,3,4
12,7,3
12,8,2
13,1,3
13,2,4
13,3,2
13,5,3
13,9,3
14,2,3
14,3,2
14,5,1
14,7,1
14,8,5
14,9,2
15,1,3
15,2,2
15,3,2
15,6,5
15,7,1
15,9,3
16,2,2
16,3,4
16,6,1
16,7,3
16,10,1
17,3,1
17,4,3
17,7,4
17,8,4
18,3,3
18,5,2
18,6,3
18,9,1
18,10,2
19,1,1
19,2,5
19,6,2
19,7,2
19,8,3
19,10,3
20,1,2
20,2,2
20,3,1
20,4,4
20,8,1

20,8,1 means User20 liked item8 and given rating 1.


Following application finds recommendations, similar users for customer 1.
import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.CachingRecommender;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;

public class CachingRecommenderEx {
 private static String input = "/Users/harikrishna_gurram/customer.csv";
 private static final int NEIGHBORHOOD_SIZE = 5;
 private static DataModel model = null;
 private static LogLikelihoodSimilarity similarity = null;
 private static UserNeighborhood neighborhood = null;
 private static UserBasedRecommender recommender = null;
 private static CachingRecommender cachingRecommender = null;

 private static String[] books = { "Meet Big Brother",
   "Explore the Universe", "Memoir as metafiction",
   "A child-soldier's story", "Wicked good fun",
   "The 60s kids classic", "A short-form master",
   "Go down the rabbit hole", "Unseated a president",
   "An Irish-American Memoir" };

 private static String[] userNames = { "Hari Krishna Gurram", "Gopi Battu",
   "Rama Krishna Gurram", "Sudheer Ganji", "Kiran Darsi",
   "Joel Chelli", "Sankalp Dubey", "Sunil Kumar", "Janaki Sriram",
   "Phalgun Garimella", "Reshmi george", "Sailaja Navakotla",
   "Aravind Phaneendra", "Keerthi Shetty", "Sujatha",
   "Vadiraj Kulakarni", "Arpan", "Suprabath Bisoi", "Sravani",
   "Gireesh Amara" };

 public static void main(String args[]) throws IOException, TasteException {
  model = new FileDataModel(new File(input));
  similarity = new LogLikelihoodSimilarity(model);
  neighborhood = new NearestNUserNeighborhood(NEIGHBORHOOD_SIZE,
    similarity, model);

  recommender = new GenericUserBasedRecommender(model, neighborhood,
    similarity);

  cachingRecommender = new CachingRecommender(recommender);

  List<RecommendedItem> recommendations = cachingRecommender.recommend(1,
    5);

  System.out.println("Recommendations for customer " + userNames[0]
    + " are:");
  System.out.println("*************************************************");

  System.out.println("BookId\title\t\testimated preference");
  for (RecommendedItem recommendation : recommendations) {
   int bookId = (int) recommendation.getItemID();
   float estimatedPref = cachingRecommender.estimatePreference(1,
     bookId);
   System.out.println(bookId + " " + books[bookId - 1] + "\t"
     + estimatedPref);
  }

  System.out.println("*************************************************");

 }
}


Output
Recommendations for customer Hari Krishna Gurram are:
*************************************************
BookId itle  estimated preference
7 A short-form master 3.067125
8 Go down the rabbit hole 2.552092
3 Memoir as metafiction 2.2255363
*************************************************




Prevoius                                                 Next                                                 Home

No comments:

Post a Comment