SpearmanCorrelationSimilarity
is like PearsonCorrelationSimilarity, but compares relative ranking of
preference values instead of preference values themselves. That is, each user's
preferences are sorted and then assign a rank as their preference value, with 1
being assigned to the least preferred item.
Let’s say I
had following input data.
customer.csv
1,4,3 1,7,2 1,8,2 1,10,1 2,3,2 2,4,3 2,6,3 2,7,1 2,9,1 3,0,3 3,3,2 3,4,1 3,8,3 3,9,1 4,2,5 4,3,4 4,7,3 4,9,2 5,4,5 5,6,4 5,7,1 5,8,3
1,4,3 means
customer 1 like item 4 and rated it 3
import java.io.File; import java.io.IOException; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.similarity.SpearmanCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; public class SpearmanCorrelationSimilarityEx { public static String dataFile = "/Users/harikrishna_gurram/customer.csv"; public static void main(String args[]) throws IOException, TasteException { DataModel model = new FileDataModel(new File(dataFile)); SpearmanCorrelationSimilarity similarity = new SpearmanCorrelationSimilarity( model); System.out.println("Similarity between user1 and user2 is " + similarity.userSimilarity(1, 2)); } }
Output
Similarity
between user1 and user2 is 1.0
No comments:
Post a Comment