It is just
like Like ItemAverageRecommender, but the estimated preferences are adjusted
for the users' average preference value.
For example,
say user A has not rated item I.
Item I's average preference value is
3.1.
User A's average preference value is
4.2
Average over all preference values is
4.0.
User A prefers items 0.2 higher on over
all average, so, the estimated preference for user A, item I is 3.1 + 0.2 = 3.3
Let’s say I
had following input data.
Book id
|
Title
|
1
|
Meet Big
Brother
|
2
|
Explore
the Universe
|
3
|
Memoir as
metafiction
|
4
|
A
child-soldier's story
|
5
|
Wicked
good fun
|
6
|
The 60s
kids classic
|
7
|
A
short-form master
|
8
|
Go down
the rabbit hole
|
9
|
Unseated a
president
|
10
|
An
Irish-American Memoir
|
User id
|
Name
|
1
|
Hari
Krishna Gurram
|
2
|
Gopi Battu
|
3
|
Rama
Krishna Gurram
|
4
|
Sudheer
Ganji
|
5
|
Kiran
Darsi
|
6
|
Joel
Chelli
|
7
|
Sankalp
Dubey
|
8
|
Sunil
Kumar
|
9
|
Janaki
Sriram
|
10
|
Phalgun
Garimella
|
11
|
Reshmi George
|
12
|
Sailaja
Navakotla
|
13
|
Aravind
Phaneendra
|
14
|
Keerthi
Shetty
|
15
|
Sujatha
|
16
|
Vadiraj
Kulakarni
|
17
|
Arpan
|
18
|
Suprabath
Bisoi
|
19
|
Sravani
|
20
|
Gireesh
Amara
|
Following
csv file contains customers purchages and their ratings on books.
customer.csv
1,1,3 1,2,1 1,4,5 1,5,3 1,9,3 1,10,2 2,1,2 2,3,2 2,4,1 2,7,5 3,1,5 3,2,1 3,3,1 3,6,1 3,8,1 4,1,1 4,2,1 4,6,3 4,7,1 4,9,2 5,2,1 5,3,3 5,6,5 5,10,3 6,1,1 6,2,4 6,3,4 6,7,2 6,8,3 7,1,3 7,2,3 7,3,1 7,5,3 7,6,3 7,7,3 8,1,1 8,3,3 8,4,5 8,8,1 8,9,2 9,4,2 9,6,5 9,8,3 9,9,3 10,2,5 10,3,1 10,4,2 10,5,1 10,9,4 11,2,3 11,4,2 11,5,2 11,8,1 12,1,1 12,3,4 12,7,3 12,8,2 13,1,3 13,2,4 13,3,2 13,5,3 13,9,3 14,2,3 14,3,2 14,5,1 14,7,1 14,8,5 14,9,2 15,1,3 15,2,2 15,3,2 15,6,5 15,7,1 15,9,3 16,2,2 16,3,4 16,6,1 16,7,3 16,10,1 17,3,1 17,4,3 17,7,4 17,8,4 18,3,3 18,5,2 18,6,3 18,9,1 18,10,2 19,1,1 19,2,5 19,6,2 19,7,2 19,8,3 19,10,3 20,1,2 20,2,2 20,3,1 20,4,4 20,8,1
20,8,1 means
User20 liked item8 and given rating 1.
Following
application finds recommendations for customer 1.
import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.recommender.ItemUserAverageRecommender; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; public class ItemUserAverageRecommenderEx { private static String input = "/Users/harikrishna_gurram/customer.csv"; private static DataModel model = null; private static ItemUserAverageRecommender recommender = null; private static String[] books = { "Meet Big Brother", "Explore the Universe", "Memoir as metafiction", "A child-soldier's story", "Wicked good fun", "The 60s kids classic", "A short-form master", "Go down the rabbit hole", "Unseated a president", "An Irish-American Memoir" }; private static String[] userNames = { "Hari Krishna Gurram", "Gopi Battu", "Rama Krishna Gurram", "Sudheer Ganji", "Kiran Darsi", "Joel Chelli", "Sankalp Dubey", "Sunil Kumar", "Janaki Sriram", "Phalgun Garimella", "Reshmi george", "Sailaja Navakotla", "Aravind Phaneendra", "Keerthi Shetty", "Sujatha", "Vadiraj Kulakarni", "Arpan", "Suprabath Bisoi", "Sravani", "Gireesh Amara" }; public static void main(String args[]) throws IOException, TasteException { model = new FileDataModel(new File(input)); recommender = new ItemUserAverageRecommender(model); List<RecommendedItem> recommendations = recommender.recommend(1, 5); System.out.println("Recommendations for customer " + userNames[0] + " are:"); System.out.println("*************************************************"); System.out.println("BookId\title\t\testimated preference"); for (RecommendedItem recommendation : recommendations) { int bookId = (int) recommendation.getItemID(); float estimatedPref = recommender.estimatePreference(1, bookId); System.out.println(bookId + " " + books[bookId - 1] + "\t" + estimatedPref); } System.out.println("*************************************************"); } }
Output
Recommendations for customer Hari Krishna Gurram are: ************************************************* BookId itle estimated preference 6 The 60s kids classic 3.4494948 7 A short-form master 2.838384 8 Go down the rabbit hole 2.7383838 3 Memoir as metafiction 2.6050506 *************************************************
No comments:
Post a Comment