Tuesday, 15 September 2015

Mahout: ItemAverageRecommender

It estimates preference for an item to be the average of all known preference values for that item. It will not consider user information, so it is used for experimentation only. It is easy to implement and works very fast, but may not produce good recommendations.

Let’s say I had following input data.

Book id
Title
1
Meet Big Brother
2
Explore the Universe
3
Memoir as metafiction
4
A child-soldier's story
5
Wicked good fun
6
The 60s kids classic
7
A short-form master
8
Go down the rabbit hole
9
Unseated a president
10
An Irish-American Memoir

User id
Name
1
Hari Krishna Gurram
2
Gopi Battu
3
Rama Krishna Gurram
4
Sudheer Ganji
5
Kiran Darsi
6
Joel Chelli
7
Sankalp Dubey
8
Sunil Kumar
9
Janaki Sriram
10
Phalgun Garimella
11
Reshmi George
12
Sailaja Navakotla
13
Aravind Phaneendra
14
Keerthi Shetty
15
Sujatha
16
Vadiraj Kulakarni
17
Arpan
18
Suprabath Bisoi
19
Sravani
20
Gireesh Amara

Following csv file contains customers purchages and their ratings on books.


customer.csv
1,1,3
1,2,1
1,4,5
1,5,3
1,9,3
1,10,2
2,1,2
2,3,2
2,4,1
2,7,5
3,1,5
3,2,1
3,3,1
3,6,1
3,8,1
4,1,1
4,2,1
4,6,3
4,7,1
4,9,2
5,2,1
5,3,3
5,6,5
5,10,3
6,1,1
6,2,4
6,3,4
6,7,2
6,8,3
7,1,3
7,2,3
7,3,1
7,5,3
7,6,3
7,7,3
8,1,1
8,3,3
8,4,5
8,8,1
8,9,2
9,4,2
9,6,5
9,8,3
9,9,3
10,2,5
10,3,1
10,4,2
10,5,1
10,9,4
11,2,3
11,4,2
11,5,2
11,8,1
12,1,1
12,3,4
12,7,3
12,8,2
13,1,3
13,2,4
13,3,2
13,5,3
13,9,3
14,2,3
14,3,2
14,5,1
14,7,1
14,8,5
14,9,2
15,1,3
15,2,2
15,3,2
15,6,5
15,7,1
15,9,3
16,2,2
16,3,4
16,6,1
16,7,3
16,10,1
17,3,1
17,4,3
17,7,4
17,8,4
18,3,3
18,5,2
18,6,3
18,9,1
18,10,2
19,1,1
19,2,5
19,6,2
19,7,2
19,8,3
19,10,3
20,1,2
20,2,2
20,3,1
20,4,4
20,8,1


20,8,1 means User20 liked item8 and given rating 1.
import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.recommender.ItemAverageRecommender;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;

public class ItemAverageRecommenderEx {
 private static String input = "/Users/harikrishna_gurram/customer.csv";
 private static DataModel model = null;
 private static ItemAverageRecommender recommender = null;

 private static String[] books = { "Meet Big Brother",
   "Explore the Universe", "Memoir as metafiction",
   "A child-soldier's story", "Wicked good fun",
   "The 60s kids classic", "A short-form master",
   "Go down the rabbit hole", "Unseated a president",
   "An Irish-American Memoir" };

 private static String[] userNames = { "Hari Krishna Gurram", "Gopi Battu",
   "Rama Krishna Gurram", "Sudheer Ganji", "Kiran Darsi",
   "Joel Chelli", "Sankalp Dubey", "Sunil Kumar", "Janaki Sriram",
   "Phalgun Garimella", "Reshmi george", "Sailaja Navakotla",
   "Aravind Phaneendra", "Keerthi Shetty", "Sujatha",
   "Vadiraj Kulakarni", "Arpan", "Suprabath Bisoi", "Sravani",
   "Gireesh Amara" };

 public static void main(String args[]) throws IOException, TasteException {
  model = new FileDataModel(new File(input));

  recommender = new ItemAverageRecommender(model);

  List<RecommendedItem> recommendations = recommender.recommend(1, 5);

  System.out.println("Recommendations for customer " + userNames[0]
    + " are:");
  System.out.println("*************************************************");

  System.out.println("BookId\title\t\testimated preference");
  for (RecommendedItem recommendation : recommendations) {
   int bookId = (int) recommendation.getItemID();
   float estimatedPref = recommender.estimatePreference(1, bookId);
   System.out.println(bookId + " " + books[bookId - 1] + "\t"
     + estimatedPref);
  }

  System.out.println("*************************************************");

 }
}


Output
Recommendations for customer Hari Krishna Gurram are:
*************************************************
BookId itle  estimated preference
6 The 60s kids classic 3.1111112
7 A short-form master 2.5
8 Go down the rabbit hole 2.4
3 Memoir as metafiction 2.2666667
*************************************************





Prevoius                                                 Next                                                 Home

No comments:

Post a Comment