This kind of
recommender is used when user preferences changing frequently. SlopeOneRecommender
is good to use for real-world systems, since these algorithms are easy to implement
and support dynamic updates.
You can go
through following articles for more information.
Note
SlopeOne
Recommender was removed from Mahout 0.8, If you want to still use it, use an
earlier version such as Mahout 0.7.
Let’s say I
had following input data.
Book id
|
Title
|
1
|
Meet Big
Brother
|
2
|
Explore
the Universe
|
3
|
Memoir as
metafiction
|
4
|
A
child-soldier's story
|
5
|
Wicked
good fun
|
6
|
The 60s
kids classic
|
7
|
A
short-form master
|
8
|
Go down
the rabbit hole
|
9
|
Unseated a
president
|
10
|
An
Irish-American Memoir
|
User id
|
Name
|
1
|
Hari
Krishna Gurram
|
2
|
Gopi Battu
|
3
|
Rama
Krishna Gurram
|
4
|
Sudheer
Ganji
|
5
|
Kiran
Darsi
|
6
|
Joel
Chelli
|
7
|
Sankalp
Dubey
|
8
|
Sunil
Kumar
|
9
|
Janaki
Sriram
|
10
|
Phalgun
Garimella
|
11
|
Reshmi
George
|
12
|
Sailaja
Navakotla
|
13
|
Aravind
Phaneendra
|
14
|
Keerthi
Shetty
|
15
|
Sujatha
|
16
|
Vadiraj
Kulakarni
|
17
|
Arpan
|
18
|
Suprabath
Bisoi
|
19
|
Sravani
|
20
|
Gireesh
Amara
|
Following
csv file contains customers purchages and their ratings on books.
customer.csv
1,1,3 1,2,1 1,4,5 1,5,3 1,9,3 1,10,2 2,1,2 2,3,2 2,4,1 2,7,5 3,1,5 3,2,1 3,3,1 3,6,1 3,8,1 4,1,1 4,2,1 4,6,3 4,7,1 4,9,2 5,2,1 5,3,3 5,6,5 5,10,3 6,1,1 6,2,4 6,3,4 6,7,2 6,8,3 7,1,3 7,2,3 7,3,1 7,5,3 7,6,3 7,7,3 8,1,1 8,3,3 8,4,5 8,8,1 8,9,2 9,4,2 9,6,5 9,8,3 9,9,3 10,2,5 10,3,1 10,4,2 10,5,1 10,9,4 11,2,3 11,4,2 11,5,2 11,8,1 12,1,1 12,3,4 12,7,3 12,8,2 13,1,3 13,2,4 13,3,2 13,5,3 13,9,3 14,2,3 14,3,2 14,5,1 14,7,1 14,8,5 14,9,2 15,1,3 15,2,2 15,3,2 15,6,5 15,7,1 15,9,3 16,2,2 16,3,4 16,6,1 16,7,3 16,10,1 17,3,1 17,4,3 17,7,4 17,8,4 18,3,3 18,5,2 18,6,3 18,9,1 18,10,2 19,1,1 19,2,5 19,6,2 19,7,2 19,8,3 19,10,3 20,1,2 20,2,2 20,3,1 20,4,4 20,8,1
20,8,1 means
User20 liked item8 and given rating 1.
Following application
finds recommendation for customer 1.
import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.recommender.Recommender; public class SlopeOneRecommenderEx { private static String input = "/Users/harikrishna_gurram/customer.csv"; private static DataModel model = null; private static Recommender recommender = null; private static String[] books = { "Meet Big Brother", "Explore the Universe", "Memoir as metafiction", "A child-soldier's story", "Wicked good fun", "The 60s kids classic", "A short-form master", "Go down the rabbit hole", "Unseated a president", "An Irish-American Memoir" }; private static String[] userNames = { "Hari Krishna Gurram", "Gopi Battu", "Rama Krishna Gurram", "Sudheer Ganji", "Kiran Darsi", "Joel Chelli", "Sankalp Dubey", "Sunil Kumar", "Janaki Sriram", "Phalgun Garimella", "Reshmi george", "Sailaja Navakotla", "Aravind Phaneendra", "Keerthi Shetty", "Sujatha", "Vadiraj Kulakarni", "Arpan", "Suprabath Bisoi", "Sravani", "Gireesh Amara" }; public static void main(String args[]) throws IOException, TasteException { model = new FileDataModel(new File(input)); recommender = new SlopeOneRecommender(model); List<RecommendedItem> recommendations = recommender.recommend(1, 5); System.out.println("Recommendations for customer " + userNames[0] + " are:"); System.out.println("*************************************************"); System.out.println("BookId\title\t\testimated preference"); for (RecommendedItem recommendation : recommendations) { int bookId = (int) recommendation.getItemID(); float estimatedPref = recommender.estimatePreference(1, bookId); System.out.println(bookId + " " + books[bookId - 1] + "\t" + estimatedPref); } System.out.println("*************************************************"); } }
Output
Recommendations for customer Hari Krishna Gurram are: ************************************************* BookId itle estimated preference 6 The 60s kids classic 3.2254517 8 Go down the rabbit hole 2.4616354 7 A short-form master 2.3732634 3 Memoir as metafiction 2.341711 *************************************************
No comments:
Post a Comment