Knn stands
for K nearest neighbors. The weights to compute the final predicted preferences
are calculated using linear interpolation, through an Optimizer. This algorithm
is based in the paper of Robert M. Bell and Yehuda Koren in ICDM '07.
KnnItemBasedRecommender
class provides following constructors instantiate.
KnnItemBasedRecommender(DataModel
dataModel, ItemSimilarity similarity, Optimizer optimizer,
CandidateItemsStrategy candidateItemsStrategy, MostSimilarItemsCandidateItemsStrategy
mostSimilarItemsCandidateItemsStrategy, int neighborhoodSize)
KnnItemBasedRecommender(DataModel
dataModel, ItemSimilarity similarity, Optimizer optimizer, int
neighborhoodSize)
Following
classes implements Optimizer interface.
NonNegativeQuadraticOptimizer
ConjugateGradientOptimizer
Let’s say I
had following input data.
Book id
|
Title
|
1
|
Meet Big
Brother
|
2
|
Explore
the Universe
|
3
|
Memoir as
metafiction
|
4
|
A
child-soldier's story
|
5
|
Wicked
good fun
|
6
|
The 60s
kids classic
|
7
|
A
short-form master
|
8
|
Go down
the rabbit hole
|
9
|
Unseated a
president
|
10
|
An
Irish-American Memoir
|
User id
|
Name
|
1
|
Hari
Krishna Gurram
|
2
|
Gopi Battu
|
3
|
Rama
Krishna Gurram
|
4
|
Sudheer
Ganji
|
5
|
Kiran
Darsi
|
6
|
Joel
Chelli
|
7
|
Sankalp
Dubey
|
8
|
Sunil
Kumar
|
9
|
Janaki
Sriram
|
10
|
Phalgun
Garimella
|
11
|
Reshmi
George
|
12
|
Sailaja
Navakotla
|
13
|
Aravind
Phaneendra
|
14
|
Keerthi
Shetty
|
15
|
Sujatha
|
16
|
Vadiraj
Kulakarni
|
17
|
Arpan
|
18
|
Suprabath
Bisoi
|
19
|
Sravani
|
20
|
Gireesh
Amara
|
Following
csv file contains customers purchages and their ratings on books.
customer.csv
1,1,3 1,2,1 1,4,5 1,5,3 1,9,3 1,10,2 2,1,2 2,3,2 2,4,1 2,7,5 3,1,5 3,2,1 3,3,1 3,6,1 3,8,1 4,1,1 4,2,1 4,6,3 4,7,1 4,9,2 5,2,1 5,3,3 5,6,5 5,10,3 6,1,1 6,2,4 6,3,4 6,7,2 6,8,3 7,1,3 7,2,3 7,3,1 7,5,3 7,6,3 7,7,3 8,1,1 8,3,3 8,4,5 8,8,1 8,9,2 9,4,2 9,6,5 9,8,3 9,9,3 10,2,5 10,3,1 10,4,2 10,5,1 10,9,4 11,2,3 11,4,2 11,5,2 11,8,1 12,1,1 12,3,4 12,7,3 12,8,2 13,1,3 13,2,4 13,3,2 13,5,3 13,9,3 14,2,3 14,3,2 14,5,1 14,7,1 14,8,5 14,9,2 15,1,3 15,2,2 15,3,2 15,6,5 15,7,1 15,9,3 16,2,2 16,3,4 16,6,1 16,7,3 16,10,1 17,3,1 17,4,3 17,7,4 17,8,4 18,3,3 18,5,2 18,6,3 18,9,1 18,10,2 19,1,1 19,2,5 19,6,2 19,7,2 19,8,3 19,10,3 20,1,2 20,2,2 20,3,1 20,4,4 20,8,1
20,8,1 means
User20 liked item8 and given rating 1.
Following
application finds recommendations for customer 4.
import java.io.File; import java.io.IOException; import java.util.List; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.recommender.knn.ConjugateGradientOptimizer; import org.apache.mahout.cf.taste.impl.recommender.knn.KnnItemBasedRecommender; import org.apache.mahout.cf.taste.impl.recommender.knn.Optimizer; import org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.similarity.ItemSimilarity; public class KnnItemBasedRecommenderEx { private static String input = "/Users/harikrishna_gurram/customer.csv"; private static DataModel model = null; private static KnnItemBasedRecommender recommender = null; private static Optimizer optimizer = null; private static ItemSimilarity similarity = null; private static String[] books = { "Meet Big Brother", "Explore the Universe", "Memoir as metafiction", "A child-soldier's story", "Wicked good fun", "The 60s kids classic", "A short-form master", "Go down the rabbit hole", "Unseated a president", "An Irish-American Memoir" }; private static String[] userNames = { "Hari Krishna Gurram", "Gopi Battu", "Rama Krishna Gurram", "Sudheer Ganji", "Kiran Darsi", "Joel Chelli", "Sankalp Dubey", "Sunil Kumar", "Janaki Sriram", "Phalgun Garimella", "Reshmi george", "Sailaja Navakotla", "Aravind Phaneendra", "Keerthi Shetty", "Sujatha", "Vadiraj Kulakarni", "Arpan", "Suprabath Bisoi", "Sravani", "Gireesh Amara" }; public static void main(String args[]) throws IOException, TasteException { model = new FileDataModel(new File(input)); similarity = new LogLikelihoodSimilarity(model); optimizer = new ConjugateGradientOptimizer(); recommender = new KnnItemBasedRecommender(model, similarity, optimizer, 10); List<RecommendedItem> recommendations = recommender.recommend(4, 5); System.out.println("Recommendations for customer " + userNames[3] + " are:"); System.out.println("*************************************************"); System.out.println("BookId\title\t\testimated preference"); for (RecommendedItem recommendation : recommendations) { int bookId = (int) recommendation.getItemID(); float estimatedPref = recommender.estimatePreference(1, bookId); System.out.println(bookId + " " + books[bookId - 1] + "\t" + estimatedPref); } System.out.println("*************************************************"); } }
Output
Recommendations for customer Sudheer Ganji are: ************************************************* BookId itle estimated preference 3 Memoir as metafiction NaN *************************************************
No comments:
Post a Comment