Wednesday 9 September 2015

Mahout: LogLikelihoodSimilarity : Compute User similarity


LogLikelihoodSimilarity used to handle rare events. Following blog article explains it clearly.

Let’s say I had following input data.

customer.csv
1,4,3
1,7,2
1,8,2
1,10,1
2,3,2
2,4,3
2,6,3
2,7,1
2,9,1
3,0,3
3,3,2
3,4,1
3,8,3
3,9,1
4,2,5
4,3,4
4,7,3
4,9,2
5,4,5
5,6,4
5,7,1
5,8,3


1,4,3 means customer 1 like item 4 and rated it 3
import java.io.File;
import java.io.IOException;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.similarity.LogLikelihoodSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;

public class LogLikelihoodSimilarityEx {
 public static String dataFile = "/Users/harikrishna_gurram/customer.csv";

 public static void main(String args[]) throws IOException, TasteException {

  DataModel model = new FileDataModel(new File(dataFile));

  LogLikelihoodSimilarity similarity = new LogLikelihoodSimilarity(model);

  System.out.println("Similarity between user1 and user2 is "
    + similarity.userSimilarity(1, 2));

 }
}


Output
Similarity between user1 and user2 is 0.08258081305700604
 

Prevoius                                                 Next                                                 Home

No comments:

Post a Comment