Below table summarizes the conditional functions supported in Hive.
I am using below sample data to demonstrate the examples.
Table definition
CREATE TABLE emp (
id INT,
name STRING,
hobbies ARRAY<STRING>,
technology_experience MAP<STRING,STRING>,
gender_age STRUCT<gender:STRING,age:INT>,
rating DOUBLE,
salary DOUBLE
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':'
STORED AS TEXTFILE;
Load the data to emp table
empInfo.txt
1|Hari|Football,Cricket|Java:3.4Yrs,C:4.5Yrs|Male,30|-1.5|1000000 2|Chamu|Trekking,Watching movies|Selenium:5.6Yrs|Female,38|3|2500000 3|Sailu|Chess,Listening to music|EmbeddedC:9Yrs|Female,32|2.5|1300000 4|Gopi|Cricket|Datastage:11Yrs|Male,32|-0.7|81000000 5|Rahim|||Male,|-0.7|500000 4|Gopi|Cricket|Datastage:11Yrs|Male,32|-0.7|81000000 5|Rahim||||-0.7|500000
Execute below command to load the data to emp table.
LOAD DATA LOCAL INPATH '/home/cloudera/examples/hive/empInfo.txt' INTO TABLE emp;
hive> SELECT * FROM emp;
OK
emp.id emp.name emp.hobbies emp.technology_experience emp.gender_age emp.rating emp.salary
1 Hari ["Football","Cricket"] {"Java":"3.4Yrs","C":"4.5Yrs"} {"gender":"Male","age":30} -1.5 1000000.0
2 Chamu ["Trekking","Watching movies"] {"Selenium":"5.6Yrs"} {"gender":"Female","age":38} 3.0 2500000.0
3 Sailu ["Chess","Listening to music"] {"EmbeddedC":"9Yrs"} {"gender":"Female","age":32} 2.5 1300000.0
4 Gopi ["Cricket"] {"Datastage":"11Yrs"} {"gender":"Male","age":32} -0.7 8.1E7
5 Rahim [] {} {"gender":"Male","age":null} -0.7 500000.0
Time taken: 0.034 seconds, Fetched: 5 row(s)
No comments:
Post a Comment