Step 1: Select numeric column names using ‘select_dtypes’ method.
numeric_column_names = df.select_dtypes(include=['float64', 'int64']).columns
Step 2: Extract the numeric columns data from dataframe
numeric_data = df[numeric_column_names]
Find the below working application.
select_only_numeric_columns.py
import pandas as pd
df = pd.DataFrame(
{
'a': [1, 2, 3, 4],
'b': [True, False, True, True],
'c': [1.23, 4.5, 6.7, 8],
'd': ['a', 'e', 'i', 'o']
}
)
numeric_column_names = df.select_dtypes(include=['float64', 'int64']).columns
numeric_data = df[numeric_column_names]
print(f'df : \n{df}')
print(f'\nnumeric_column_names : \n{numeric_column_names}')
print(f'\nnumeric_data : \n{numeric_data}')
Output
df : a b c d 0 1 True 1.23 a 1 2 False 4.50 e 2 3 True 6.70 i 3 4 True 8.00 o numeric_column_names : Index(['a', 'c'], dtype='object') numeric_data : a c 0 1 1.23 1 2 4.50 2 3 6.70 3 4 8.00
Previous Next Home
No comments:
Post a Comment