Using Pandas concat method, we can concatenate the cotent of one ore more data frames.
Example
data1 = { 'Name': ['Krishna', 'Chamu', 'Joel'],
         'Age': [34, 25, 29],
        'City': ['Bangalore', 'Chennai', 'Hyderabad'],
        'Gender': ['Male', 'Female', 'Male'],
         'Weight': [74, 58, 85]}
data2 = { 'Name': ['Gopi', 'Sravya', "Raj"],
         'Age': [41, 52, 23],
        'City': ['Hyderabad', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male'],
         'Weight': [87, 63, 79]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
final_df = pd.concat([df1, df2])
In the above example, I defined two dataframe df1, df2 and used concat method to concatenate the content of dtaaframes df1 and df2. 'final_df' point to below content.
Name Age City Gender Weight 0 Krishna 34 Bangalore Male 74 1 Chamu 25 Chennai Female 58 2 Joel 29 Hyderabad Male 85 0 Gopi 41 Hyderabad Male 87 1 Sravya 52 Bangalore Female 63 2 Raj 23 Chennai Male 79
As you see the above output, index numbers are preserved from original dataframes. We can ignore the indexes from original dataframes by passing the argument ignore_index to True.
Find the below working application.
concat_dfs.py
import pandas as pd
data1 = { 'Name': ['Krishna', 'Chamu', 'Joel'],
         'Age': [34, 25, 29],
        'City': ['Bangalore', 'Chennai', 'Hyderabad'],
        'Gender': ['Male', 'Female', 'Male'],
         'Weight': [74, 58, 85]}
data2 = { 'Name': ['Gopi', 'Sravya', "Raj"],
         'Age': [41, 52, 23],
        'City': ['Hyderabad', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male'],
         'Weight': [87, 63, 79]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print('df1')
print(df1)
print('\ndf2')
print(df2)
final_df = pd.concat([df1, df2])
print('\nDataframe after concatenating df1 and df2 data')
print(final_df)
final_df = pd.concat([df1, df2], ignore_index=True)
print('\nDataframe after concatenating df1 and df2 data by ignoring index')
print(final_df)
Output
df1
      Name  Age       City  Gender  Weight
0  Krishna   34  Bangalore    Male      74
1    Chamu   25    Chennai  Female      58
2     Joel   29  Hyderabad    Male      85
df2
     Name  Age       City  Gender  Weight
0    Gopi   41  Hyderabad    Male      87
1  Sravya   52  Bangalore  Female      63
2     Raj   23    Chennai    Male      79
Dataframe after concatenating df1 and df2 data
      Name  Age       City  Gender  Weight
0  Krishna   34  Bangalore    Male      74
1    Chamu   25    Chennai  Female      58
2     Joel   29  Hyderabad    Male      85
0     Gopi   41  Hyderabad    Male      87
1   Sravya   52  Bangalore  Female      63
2      Raj   23    Chennai    Male      79
Dataframe after concatenating df1 and df2 data by ignoring index
      Name  Age       City  Gender  Weight
0  Krishna   34  Bangalore    Male      74
1    Chamu   25    Chennai  Female      58
2     Joel   29  Hyderabad    Male      85
3     Gopi   41  Hyderabad    Male      87
4   Sravya   52  Bangalore  Female      63
5      Raj   23    Chennai    Male      79
 
Previous Next Home
No comments:
Post a Comment