In this post, I am going to explain how to set values to specific columns using iloc accessor.
Example 1: Setting the value of a specific row and column
df.iloc[row_index, column_index_to_update] = 'new_value'
Example 2: Setting the value of a specific row and multiple columns
df.iloc[row_index, columns_to_update] = [new_value_1, new_value_2]
Find the below working application.
set_values_to_multiple_columns.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu'],
'Age': [34, 35, 29, 35],
'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Female'],
'Rating': [81, 76, 67, 100]}
df = pd.DataFrame(data)
print('Original DataFrame')
print(df)
print('\nSet "Name" column as index column')
df.set_index('Name', inplace=True)
print(df)
# Setting the value of a specific row and column
row_index = 0
column_index_to_update = 1
df.iloc[row_index, column_index_to_update] = 'Chennai'
print('\nSetting te City of Krishna to "Chennai"')
print(df)
# Setting the value of a specific row and multiple columns
row_index = 0
columns_to_update = [0, 3]
df.iloc[row_index, columns_to_update] = [45, 35]
print('\nUpdating the Age and Rating of Krishna')
print(df)
Output
Original DataFrame Name Age City Gender Rating 0 Krishna 34 Bangalore Male 81 1 Sailu 35 Hyderabad Female 76 2 Joel 29 Hyderabad Male 67 3 Chamu 35 Chennai Female 100 Set "Name" column as index column Age City Gender Rating Name Krishna 34 Bangalore Male 81 Sailu 35 Hyderabad Female 76 Joel 29 Hyderabad Male 67 Chamu 35 Chennai Female 100 Setting te City of Krishna to "Chennai" Age City Gender Rating Name Krishna 34 Chennai Male 81 Sailu 35 Hyderabad Female 76 Joel 29 Hyderabad Male 67 Chamu 35 Chennai Female 100 Updating the Age and Rating of Krishna Age City Gender Rating Name Krishna 45 Chennai Male 35 Sailu 35 Hyderabad Female 76 Joel 29 Hyderabad Male 67 Chamu 35 Chennai Female 100
No comments:
Post a Comment