In this post, I am going to explain how to set values to a specific columns using loc access specifier.
Example 1: Setting the value of a specific row and column
df.loc[row_label, column_to_update] = 'new_value'
Example 2: Updating multiple columns
df.loc[row_label, columns_to_update] = [new_val1, new_val2]
set_values_to_multiple_columns.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu'],
'Age': [34, 35, 29, 35],
'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Female'],
'Rating': [81, 76, 67, 100]}
df = pd.DataFrame(data)
print('Original DataFrame')
print(df)
print('\nSet "Name" column as index column')
df.set_index('Name', inplace=True)
print(df)
# Setting the value of a specific row and column
row_label = 'Krishna'
column_to_update = 'City'
df.loc[row_label, column_to_update] = 'Chennai'
print('\nSetting the City of Krishna to "Chennai"')
print(df)
# Setting the value of a specific row and multiple columns
row_label = 'Krishna'
columns_to_update = ['Age', 'Rating']
df.loc[row_label, columns_to_update] = [45, 35]
print('\nUpdating the Age and Rating of Krishna')
print(df)
Output
Original DataFrame
Name Age City Gender Rating
0 Krishna 34 Bangalore Male 81
1 Sailu 35 Hyderabad Female 76
2 Joel 29 Hyderabad Male 67
3 Chamu 35 Chennai Female 100
Set "Name" column as index column
Age City Gender Rating
Name
Krishna 34 Bangalore Male 81
Sailu 35 Hyderabad Female 76
Joel 29 Hyderabad Male 67
Chamu 35 Chennai Female 100
Setting the City of Krishna to "Chennai"
Age City Gender Rating
Name
Krishna 34 Chennai Male 81
Sailu 35 Hyderabad Female 76
Joel 29 Hyderabad Male 67
Chamu 35 Chennai Female 100
Updating the Age and Rating of Krishna
Age City Gender Rating
Name
Krishna 45 Chennai Male 35
Sailu 35 Hyderabad Female 76
Joel 29 Hyderabad Male 67
Chamu 35 Chennai Female 100
No comments:
Post a Comment