In this post, I am going to explain how to visualize the data from a csv file with Pandas and Pyplot.
Step 1: Create inflation.csv file with below content.
inflation.csv
Year,India,China,Australia,America,Canada,Japan 2013,6.2,2.3,2.7,1.7,1.3,0.7 2014,5.4,2.1,2.5,1.8,1.4,0.8 2015,4.9,2,2.6,1.9,1.5,0.9 2016,5.2,1.8,2.4,1.9,1.6,0.9 2017,3.8,2.9,2.0,2.2,1.7,0.8 2018,4.5,2.9,2.2,2.4,1.8,1.0 2019,4.8,3.0,2.3,2.5,1.9,1.1 2020,6.2,3.7,2.5,2.6,2.0,1.2 2021,5.6,3.9,2.7,2.7,2.1,1.3 2022,6.3,4.6,2.8,2.8,2.2,1.4
Step 2: Read the csv file data to a dataframe.
df = pd.read_csv('inflation.csv')
Step 3: Plot line graph using China and India inflation data.
plt.plot(df['Year'], df['India'], color='red', label='india', markersize=5, marker='o')
plt.plot(df['Year'], df['China'], color='blue', label='india', markersize=5, marker='x')
Find the below working application.
hello_world.py
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('inflation.csv')
plt.plot(df['Year'], df['India'], color='red', label='india', markersize=5, marker='o')
plt.plot(df['Year'], df['China'], color='blue', label='india', markersize=5, marker='x')
plt.show()
Output
Let’s use a for loop to print all the countries inflation data in line graph.
for column in df:
if column != 'Year':
plt.plot(df['Year'], df[column], marker='.', label=column)
Find the below working application.
another_example.py
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('inflation.csv')
for column in df:
if column != 'Year':
plt.plot(df['Year'], df[column], marker='.', label=column)
plt.legend()
plt.show()
Output
No comments:
Post a Comment