In this post, I am going to explain different ways to traverse the Pandas Series.
Approach 1: Using for loop and series index attribute.
for index_label in series.index:
value = series[index_label]
print(f"Index: {index_label}, Value: {value}")
Approach 2: Using enumerate method.
for index_position, index_label in enumerate(series.index):
print(f"Index: {index_position}, Label: {index_label}, Value: {series[index_label]}")
Approach 3: Using series items method.
for index_label, value in series.items():
print(f"Index: {index_label}, Value: {value}")
traverse_series.py
import pandas as pd
primes_list = [2, 3, 5, 7]
index_labels = ['A', 'B', 'C', 'D']
series = pd.Series(primes_list, index=index_labels)
# Using for loop and series index attribute.
print('Using for loop and series index attribute.')
for index_label in series.index:
value = series[index_label]
print(f"Index: {index_label}, Value: {value}")
# Using enumerate method
print('\nUsing for loop and series index attribute.')
for index_position, index_label in enumerate(series.index):
print(f"Index: {index_position}, Label: {index_label}, Value: {series[index_label]}")
# Using series items method
print('\nUsing series items method')
for index_label, value in series.items():
print(f"Index: {index_label}, Value: {value}")
Output
Using for loop and series index attribute. Index: A, Value: 2 Index: B, Value: 3 Index: C, Value: 5 Index: D, Value: 7 Using for loop and series index attribute. Index: 0, Label: A, Value: 2 Index: 1, Label: B, Value: 3 Index: 2, Label: C, Value: 5 Index: 3, Label: D, Value: 7 Using for loop and series index attribute. Index: A, Value: 2 Index: B, Value: 3 Index: C, Value: 5 Index: D, Value: 7
No comments:
Post a Comment