CityBlockSimilarity
is implementation of City Block distance (Also known as Manhattan distance.
if x=(a,b)
and y=(c,d), the Manhatten distance between x and y is |a−c|+|b−d|.
x = (5, 3)
y = (6, 2)
Manhatten
distance = |5-6| + |3-2| = 1 + 1 = 2.
x1: 1.0, 3.2, 4.8, 0.1, 3.2, 0.6, 2.2, 1.1
x2: 0.1, 5.2, 1.9, 4.2, 1.9, 0.1, 0.1, 6.0
Manhatten
distance(MD) between x1 and x2 is
|1−0.1|+|3.2−5.2|+|4.8−1.9|+|0.1−4.2|+|3.2−1.9|+|0.6−0.1|+|2.2−0.1|+|1.1−6.0|
0.9+2+2.9+4.1+1.3+0.5+2.1+4.9
18.7
Following
example explains how to compute ItemSimilarity between items using
CityBlockSimilarity.
Let’s say I
had following input data.
customer.csv
1,4,3 1,7,2 1,8,2 1,10,1 2,3,2 2,4,3 2,6,3 2,7,1 2,9,1 3,0,3 3,3,2 3,4,1 3,8,3 3,9,1 4,2,5 4,3,4 4,7,3 4,9,2 5,4,5 5,6,4 5,7,1 5,8,3
1,4,3 means
customer 1 like item 4 and rated it 3
import java.io.File; import java.io.IOException; import org.apache.mahout.cf.taste.common.TasteException; import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.similarity.CityBlockSimilarity; import org.apache.mahout.cf.taste.model.DataModel; public class CityBlockSimilarityEx { public static String dataFile = "/Users/harikrishna_gurram/customer.csv"; public static void main(String args[]) throws IOException, TasteException { DataModel model = new FileDataModel(new File(dataFile)); CityBlockSimilarity similarity = new CityBlockSimilarity(model); long itemIds[] = { 2, 3, 4, 5, 6, 7, 8, 9, 10 }; double distance[] = similarity.itemSimilarities(1, itemIds); for (int i = 0; i < itemIds.length; i++) { System.out.println("distance between item 1 and " + itemIds[i] + " is " + distance[i]); } } }
Output
distance between item 1 and 2 is 0.5 distance between item 1 and 3 is 0.25 distance between item 1 and 4 is 0.2 distance between item 1 and 5 is 1.0 distance between item 1 and 6 is 0.3333333333333333 distance between item 1 and 7 is 0.2 distance between item 1 and 8 is 0.25 distance between item 1 and 9 is 0.25 distance between item 1 and 10 is 0.5
No comments:
Post a Comment