Step 1: Install the Ollama Library
To begin, you need to install the Ollama library. Depending on your Python setup, you can use either pip or pip3:
pip install ollama (OR) pip3 install ollama
This ensures the library is installed and ready to use.
Step 2: Writing Your First Script
Once the library is installed, you can create a Python script to list all the available LLMs in your system. Here's a simple example:
llmsInMySystem.py
import ollama llmsInMySystem = ollama.list(); print(llmsInMySystem);
Step 3: Running the Script
Save the above code in a file named llmsInMySystem.py. Run the script using the following command.
python llmsInMySystem.py
If
everything is set up correctly, the script will output a list of all the
available LLMs on your system.
models=[Model(model='llama3.2-vision:latest', modified_at=datetime.datetime(2025, 1, 18, 15, 21, 43, 518870, tzinfo=TzInfo(+05:30)), digest='085a1fdae525a3804ac95416b38498099c241defd0f1efc71dcca7f63190ba3d', size=7901829417, details=ModelDetails(parent_model='', format='gguf', family='mllama', families=['mllama', 'mllama'], parameter_size='9.8B', quantization_level='Q4_K_M')), Model(model='llama3.2:latest', modified_at=datetime.datetime(2025, 1, 17, 12, 26, 55, 61315, tzinfo=TzInfo(+05:30)), digest='a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72', size=2019393189, details=ModelDetails(parent_model='', format='gguf', family='llama', families=['llama'], parameter_size='3.2B', quantization_level='Q4_K_M'))]
ollama.list(): This function queries your system for all installed or accessible LLMs, returning their details in a structured format.
Let’s print the llms available in my system in a tablular format like below.
prettyPrintLlms.py
import ollama from datetime import datetime # Fetch the list of available LLMs llms_in_my_system = ollama.list() # Print the output in a table format print(f"{'Model Name':<10} {'Modified At':<15} {'Digest':<20} {'Size (bytes)':<5} {'Parameter Size':<15} {'Quantization Level':<10}") print("-" * 140) for model in llms_in_my_system.models: model_name = model.model modified_at = model.modified_at.strftime("%Y-%m-%d %H:%M:%S") # Format datetime digest = model.digest size = model.size parameter_size = model.details.parameter_size quantization_level = model.details.quantization_level print(f"{model_name:<20} {modified_at:<25} {digest:<40} {size:<15} {parameter_size:<15} {quantization_level:<20}")
Output
Model Name Modified At Digest Size (bytes) Parameter Size Quantization Level -------------------------------------------------------------------------------------------------------------------------------------------- llama3.2-vision:latest 2025-01-18 15:21:43 085a1fdae525a3804ac95416b38498099c241defd0f1efc71dcca7f63190ba3d 7901829417 9.8B Q4_K_M llama3.2:latest 2025-01-17 12:26:55 a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72 2019393189 3.2B Q4_K_M
No comments:
Post a Comment