Using ‘first()’ method of DataFrameGroupBy object, we can retrieve the first row from each group based on the grouping criteria.
Example
data = {'Name': ['Krishna', 'Chamu', 'Joel', 'Gopi', 'Sravya', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Male', 'Female', 'Male']}
df = pd.DataFrame(data)
group_by_city = df.groupby('City')
first_row_of_each_group = group_by_city.first()
In the example above, I defined a DataFrame ‘df’ with columns "Name", "Age" , "City" and "Gender". We group the DataFrame by the "City" column using groupby(City) and store the result in ‘group_by_city’ variable.
By calling the first() method on the grouped object ‘group_by_city’, we can get the first record or row from every group. The result of first() method is a dataframe, where the index of the DataFrame represents the unique group values (Bangalore, Chennai, Hyderabad).
Find the below working application.
get_first_row_of_each_group.py
import pandas as pd
# Print the content of DataFrameGroupBy object
def print_group_by_result(group_by_object, label):
print('*'*50)
print(label,'\n')
for group_name, group_data in group_by_object:
print("Group Name:", group_name)
print(group_data)
print()
print('*' * 50)
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Chamu', 'Joel', 'Gopi', 'Sravya', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Male', 'Female', 'Male']}
df = pd.DataFrame(data)
print(df)
group_by_city = df.groupby('City')
print('\nGroup by city is')
print('type of group_by_city is : ', type(group_by_city))
print_group_by_result(group_by_city, 'Group by city details')
first_row_of_each_group = group_by_city.first()
print('\ntype of first_row_of_each_group : ', type(first_row_of_each_group))
print('first of each group are')
print(first_row_of_each_group)
Output
Name Age City Gender
0 Krishna 34 Bangalore Male
1 Chamu 25 Chennai Female
2 Joel 29 Hyderabad Male
3 Gopi 41 Hyderabad Male
4 Sravya 52 Bangalore Female
5 Raj 23 Chennai Male
Group by city is
type of group_by_city is : <class 'pandas.core.groupby.generic.DataFrameGroupBy'>
**************************************************
Group by city details
Group Name: Bangalore
Name Age City Gender
0 Krishna 34 Bangalore Male
4 Sravya 52 Bangalore Female
Group Name: Chennai
Name Age City Gender
1 Chamu 25 Chennai Female
5 Raj 23 Chennai Male
Group Name: Hyderabad
Name Age City Gender
2 Joel 29 Hyderabad Male
3 Gopi 41 Hyderabad Male
**************************************************
type of first_row_of_each_group : <class 'pandas.core.frame.DataFrame'>
first of each group are
Name Age Gender
City
Bangalore Krishna 34 Male
Chennai Chamu 25 Female
Hyderabad Joel 29 Male
No comments:
Post a Comment