Using DataFrameGroupBy.groups
attribute, we can get a dictionary-like view of the groups formed in groupby operation.
Example
data = {'Name': ['Krishna', 'Chamu', 'Joel', 'Gopi', 'Sravya', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Male', 'Female', 'Male']}
df = pd.DataFrame(data)
group_by_city = df.groupby('City')
dict_view = group_by_city.groups
In the example above, I defined a DataFrame 'df' with columns "Name", "Age", "City" and "Gender". We group the DataFrame by the "City" column using groupby('City'), resulting in a DataFrameGroupBy object named 'group_by_city'. Using the groups attribute of the grouped object 'group_by_city', we can get a dictionary that maps each unique group value ('Bangalore', 'Chennai', and 'Hyderabad' in this case) to the corresponding row indexes of the original DataFrame df that belong to that group.
For example, dict_view contain below information for the above example.
{'Bangalore': [0, 4], 'Chennai': [1, 5], 'Hyderabad': [2, 3]}
dictionary_like_view_of_groups.py
import pandas as pd
# Print the content of DataFrameGroupBy object
def print_group_by_result(group_by_object, label):
print('*'*50)
print(label,'\n')
for group_name, group_data in group_by_object:
print("Group Name:", group_name)
print(group_data)
print()
print('*' * 50)
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Chamu', 'Joel', 'Gopi', 'Sravya', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Male', 'Female', 'Male']}
df = pd.DataFrame(data)
print(df)
group_by_city = df.groupby('City')
print('\nGroup by city is')
print('type of group_by_city is : ', type(group_by_city))
print_group_by_result(group_by_city, 'Group by city details')
dict_view = group_by_city.groups
print('\ntype of dict_view : ', type(dict_view))
print('Data in dict_view is')
print(dict_view)
Output
Name Age City Gender 0 Krishna 34 Bangalore Male 1 Chamu 25 Chennai Female 2 Joel 29 Hyderabad Male 3 Gopi 41 Hyderabad Male 4 Sravya 52 Bangalore Female 5 Raj 23 Chennai Male Group by city is type of group_by_city is : <class 'pandas.core.groupby.generic.DataFrameGroupBy'> ************************************************** Group by city details Group Name: Bangalore Name Age City Gender 0 Krishna 34 Bangalore Male 4 Sravya 52 Bangalore Female Group Name: Chennai Name Age City Gender 1 Chamu 25 Chennai Female 5 Raj 23 Chennai Male Group Name: Hyderabad Name Age City Gender 2 Joel 29 Hyderabad Male 3 Gopi 41 Hyderabad Male ************************************************** type of dict_view : <class 'pandas.io.formats.printing.PrettyDict'> Data in dict_view is {'Bangalore': [0, 4], 'Chennai': [1, 5], 'Hyderabad': [2, 3]}
Previous Next Home
No comments:
Post a Comment