Using 'replace()' method, we can perform string replacement operations in a dataframe
Example 1: Replace the values in a specific column.
df['City'] = df['City'].str.replace('Bangalore', 'Mumbai')
In the above example, the value 'Bangalore' in the 'City' column is replaced with 'Mumbai'. This is done by selecting the 'City' column using df['City'] and using the replace() method with the specified values to be replaced.
Example 2: Replace the values across dataframe by specifying a dictionary.
replace_dict = {'Krishna': 'Hari', 'Hyderabad': 'Delhi'}
df = df.replace(replace_dict)
replace_dict specifies the mapping values 'Krishna' to 'Hari' and 'Hyderabad' to 'Delhi'. The replace() method is then used on the entire DataFrame, replacing the values based on the dictionary mapping.
Find the below working application.
replace.py
import pandas as pd
# Create a sample DataFrame
data = {'Title': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Krishna"],
'Age': [34, 35, 234, 35, 52, 34],
'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
'Rating': [67, 43, 67, 100, 41, 89]}
df = pd.DataFrame(data)
print('Original DataFrame')
print(df)
df['City'] = df['City'].str.replace('Bangalore', 'Mumbai')
print('\nDataFrame after replacing City value Hyderabad to Mumbai\n', df)
# Replace values in multiple columns
replace_dict = {'Krishna': 'Hari', 'Hyderabad': 'Delhi'}
df = df.replace(replace_dict)
print('\nDataframe after replacing the dictionary of values\n', df)
Output
Original DataFrame Title Age City Gender Rating 0 Krishna 34 Bangalore Male 67 1 Sailu 35 Hyderabad Female 43 2 Joel 234 Hyderabad Male 67 3 Chamu 35 Chennai Female 100 4 Jitendra 52 Bangalore Male 41 5 Krishna 34 Chennai Male 89 DataFrame after replacing City value Hyderabad to Mumbai Title Age City Gender Rating 0 Krishna 34 Mumbai Male 67 1 Sailu 35 Hyderabad Female 43 2 Joel 234 Hyderabad Male 67 3 Chamu 35 Chennai Female 100 4 Jitendra 52 Mumbai Male 41 5 Krishna 34 Chennai Male 89 Dataframe after replacing the dictionary of values Title Age City Gender Rating 0 Hari 34 Mumbai Male 67 1 Sailu 35 Delhi Female 43 2 Joel 234 Delhi Male 67 3 Chamu 35 Chennai Female 100 4 Jitendra 52 Mumbai Male 41 5 Hari 34 Chennai Male 89
Previous Next Home
No comments:
Post a Comment