Using ‘nlargest’ method, we can get n largest values in a DataFrame.
I am going to use below data set to demonstrate the examples.
Name Age City Gender Rating 0 Krishna 34 Bangalore Male 91 1 Sailu 35 Hyderabad Female 76 2 Joel 29 Hyderabad Male 67 3 Chamu 35 Chennai Female 100 4 Jitendra 52 Bangalore Male 87 5 Raj 34 Chennai Male 89
Example 1: Get the three oldest people from the dataset.
three_oldest_emps = df.nlargest(3, columns='Age')
‘three_oldest_emps’ point to below data set.
Name Age City Gender Rating 4 Jitendra 52 Bangalore Male 87 1 Sailu 35 Hyderabad Female 76 3 Chamu 35 Chennai Female 100
Example 2: get the three oldest people by their rating from the dataset.
three_oldest_emps_by_rating = df.nlargest(3, columns=['Age', 'Rating'])
‘three_oldest_emps_by_rating’ point to below data set.
Name Age City Gender Rating 4 Jitendra 52 Bangalore Male 87 3 Chamu 35 Chennai Female 100 1 Sailu 35 Hyderabad Female 76
Find the below working application.
n_largest_rows.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Raj"],
'Age': [34, 35, 29, 35, 52, 34],
'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
'Rating': [91, 76, 67, 100, 87, 89]}
df = pd.DataFrame(data)
print('Original DataFrame')
print(df)
three_oldest_emps = df.nlargest(3, columns='Age')
print('\nthree_oldest_emps : \n', three_oldest_emps)
three_oldest_emps_by_rating = df.nlargest(3, columns=['Age', 'Rating'])
print('\nthree_oldest_emps_by_rating : \n', three_oldest_emps_by_rating)
Output
Original DataFrame Name Age City Gender Rating 0 Krishna 34 Bangalore Male 91 1 Sailu 35 Hyderabad Female 76 2 Joel 29 Hyderabad Male 67 3 Chamu 35 Chennai Female 100 4 Jitendra 52 Bangalore Male 87 5 Raj 34 Chennai Male 89 three_oldest_emps : Name Age City Gender Rating 4 Jitendra 52 Bangalore Male 87 1 Sailu 35 Hyderabad Female 76 3 Chamu 35 Chennai Female 100 three_oldest_emps_by_rating : Name Age City Gender Rating 4 Jitendra 52 Bangalore Male 87 3 Chamu 35 Chennai Female 100 1 Sailu 35 Hyderabad Female 76
Previous Next Home
No comments:
Post a Comment