Monday 4 December 2023

Pandas: iloc: Access the DataFrame rows using index position

In this post, I am going to explain how to access the DataFrame rows using index position.

 

I am going to use below dataset to demonstrate the examples.

       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

As per the above data set,

a.   row with index 0 point to the person ‘Krishna’ details

b.   Row with 1 point to the person ‘Sailu’ details etc.,

 

How to access a row at index 0?

Using df.iloc[index_location], we can access the row at index 0.

row_at_1st_position = df.iloc[0]

How to access multiple rows at a time?

By passing the list of index locations to the iloc accessor, we can access multiple rows.

rows_at_2nd_4th_positions = df.iloc[[2, 4]]

Above statement extract the rows at indexes 2nd  and 4th positions.

 

You will get ‘IndexError’, when trying to access the index which is out of bounds.

 

Find the below working application.

 

iloc_hello_world.py

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Raj"],
        'Age': [34, 35, 29, 35, 52, 34],
        'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
        'Rating': [81, 76, 67, 100, 87, 89]}

df = pd.DataFrame(data)
print('Original DataFrame')
print(df)

row_at_1st_position = df.iloc[0]
row_at_2nd_position = df.iloc[1]
print('\nrow_at_1st_position : \n', row_at_1st_position)
print('\nrow_at_2nd_position : \n', row_at_2nd_position)

rows_at_2nd_4th_positions = df.iloc[[2, 4]]
print('\nrows_at_2nd_4th_positions: \n', rows_at_2nd_4th_positions)

try:
    print('\nTrying to access the element at index 10')
    print(df.iloc[10])
except IndexError as e:
    print(e)

Output

Original DataFrame
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

row_at_1st_position : 
 Name        Krishna
Age              34
City      Bangalore
Gender         Male
Rating           81
Name: 0, dtype: object

row_at_2nd_position : 
 Name          Sailu
Age              35
City      Hyderabad
Gender       Female
Rating           76
Name: 1, dtype: object

rows_at_2nd_4th_positions: 
        Name  Age       City Gender  Rating
2      Joel   29  Hyderabad   Male      67
4  Jitendra   52  Bangalore   Male      87
Trying to access the element at index 10
single positional indexer is out-of-bounds

Following are the common use cases of iloc accessor.

 

a.   Accessing Rows and Columns

b.   Slicing

c.    Assigning values

 

Accessing rows and columns

In Pandas, both row and column indexes will start from 0.

 

Example 1: Access a single row by its integer index

df.iloc[row_index_1]

 

Example 2: Access multiple rows by their integer indices

df.iloc[[row_index_1, row_index_2]]

 

Example 3: Access specific column of the row

df.iloc[row_index_1, column_index_1]

 

Example 4: Access specific columns of the row

df.iloc[row_index_1, [column_index_1, column_index_2]]

 

Example 5: Access multiple rows and columns

df.iloc[[row_index_1, row_index_2], [column_index_1, column_index_2]]

 

access_rows_columns.py

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Raj"],
        'Age': [34, 35, 29, 35, 52, 34],
        'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
        'Rating': [81, 76, 67, 100, 87, 89]}

df = pd.DataFrame(data)
print('Original DataFrame')
print(df)

row_index_1 = 2
row_index_2 = 4

column_index_1 = 0
column_index_2 = 2

# Access a single row by its integer index
result = df.iloc[row_index_1]
print('\nAccess a single row by its integer index :\n', result)

# Access multiple rows by their integer indices
result = df.iloc[[row_index_1, row_index_2]]
print('\nAccess multiple rows by their integer indices :\n', result)

# Access specific column of the row
result = df.iloc[row_index_1, column_index_1]
print('\nAccess specific column of the row :\n', result)

# Access specific columns of the row
result = df.iloc[row_index_1, [column_index_1, column_index_2]]
print('\nAccess specific columns of the row :\n', result)

# Access multiple rows and columns
result = df.iloc[[row_index_1, row_index_2], [column_index_1, column_index_2]]
print('\nAccess multiple rows and columns :\n', result)

Output

Original DataFrame
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

Access a single row by its integer index :
 Name           Joel
Age              29
City      Hyderabad
Gender         Male
Rating           67
Name: 2, dtype: object

Access multiple rows by their integer indices :
        Name  Age       City Gender  Rating
2      Joel   29  Hyderabad   Male      67
4  Jitendra   52  Bangalore   Male      87

Access specific column of the row :
 Joel

Access specific columns of the row :
 Name         Joel
City    Hyderabad
Name: 2, dtype: object

Access multiple rows and columns :
        Name       City
2      Joel  Hyderabad
4  Jitendra  Bangalore

Slicing

Example 1: Slice rows based on integer indices

df.iloc[row_start_index:row_end_index]

 

Example 2:  Access all the rows from starting to row_end_index (end index is exclusive)

df.iloc[:row_end_index]

 

Example 3: Access all the rows from row_start_index to end

df.iloc[row_start_index:]

 

Example 4: Slice rows based on integer indices and a step of step_count

df.iloc[row_start_index:row_end_index:step_count]

 

Example 5: Slice rows and select specific columns

df.iloc[row_start_index:row_end_index, column_start_index:column_end_index]

 

Example 6: Access all rows for specific column

df.iloc[:, column_index]

 

Example 7: Access all rows for specific columns

df.iloc[:, [column_index_1, column_index_2]]

 

slicing.py

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Raj"],
        'Age': [34, 35, 29, 35, 52, 34],
        'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
        'Rating': [81, 76, 67, 100, 87, 89]}

df = pd.DataFrame(data)
print('Original DataFrame')
print(df)

row_start_index = 1
row_end_index = 5
step_count = 2
column_start_index = 0
column_end_index = 3
column_index = 0
column_index_1 = 0
column_index_2 = 2

# Slice rows based on integer indices
result = df.iloc[row_start_index:row_end_index]
print('\nSlice rows based on integer indices\n', result)

# Access all the rows from starting to row_end_index
result = df.iloc[:row_end_index]
print('\nAccess all the rows from starting to row_end_index\n', result)

# Access all the rows from row_start_index to end
result = df.iloc[row_start_index:]
print('\nAccess all the rows from row_start_index to end\n', result)

# Slice rows based on integer indices and a step of step_count
result = df.iloc[row_start_index:row_end_index:step_count]
print('\nSlice rows based on integer indices and a step of step_count\n', result)

# Slice rows and select specific columns
result = df.iloc[row_start_index:row_end_index, column_start_index:column_end_index]
print('\nSlice rows and select specific columns\n', result)

# Access all rows for specific column
result = df.iloc[:, column_index]
print('\nAccess all rows for specific column\n', result)

# Access all rows for specific columns
result = df.iloc[:, [column_index_1, column_index_2]]
print('\nAccess all rows for specific columns\n', result)

 

Output

Original DataFrame
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

Slice rows based on integer indices
        Name  Age       City  Gender  Rating
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87

Access all the rows from starting to row_end_index
        Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87

Access all the rows from row_start_index to end
        Name  Age       City  Gender  Rating
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

Slice rows based on integer indices and a step of step_count
     Name  Age       City  Gender  Rating
1  Sailu   35  Hyderabad  Female      76
3  Chamu   35    Chennai  Female     100

Slice rows and select specific columns
        Name  Age       City
1     Sailu   35  Hyderabad
2      Joel   29  Hyderabad
3     Chamu   35    Chennai
4  Jitendra   52  Bangalore

Access all rows for specific column
 0     Krishna
1       Sailu
2        Joel
3       Chamu
4    Jitendra
5         Raj
Name: Name, dtype: object

Access all rows for specific columns
        Name       City
0   Krishna  Bangalore
1     Sailu  Hyderabad
2      Joel  Hyderabad
3     Chamu    Chennai
4  Jitendra  Bangalore
5       Raj    Chennai

 

Assigning Values

Example 1: Assign a value to a specific cell

df.iloc[row_index, column_index] = 'Harika'

 

Example 2: Assign a value to multiple cells based on a condition

df.iloc[df['City'] == 'Hyderabad', column_index] = 'Mumbai'

 

assign_values.py

import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Krishna', 'Sailu', 'Joel', 'Chamu', 'Jitendra', "Raj"],
        'Age': [34, 35, 29, 35, 52, 34],
        'City': ['Bangalore', 'Hyderabad', 'Hyderabad', 'Chennai', 'Bangalore', 'Chennai'],
        'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'],
        'Rating': [81, 76, 67, 100, 87, 89]}

df = pd.DataFrame(data)
print('Original DataFrame')
print(df)

row_index = 1
column_index = 0
# Assign a value to a specific cell
print('\nSet the Name of row index 1 to Harika')
df.iloc[row_index, column_index] = 'Harika'
print(df)

# Assign a value to multiple cells based on a condition
column_index = 2
print('\nSet the city of all the people living in Hyderabad to Mumbai')
df.iloc[df['City'] == 'Hyderabad', column_index] = 'Mumbai'
print(df)

 

Output

Original DataFrame
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1     Sailu   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

Set the Name of row index 1 to Harika
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1    Harika   35  Hyderabad  Female      76
2      Joel   29  Hyderabad    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

Set the city of all the people living in Hyderabad to Mumbai
       Name  Age       City  Gender  Rating
0   Krishna   34  Bangalore    Male      81
1    Harika   35     Mumbai  Female      76
2      Joel   29     Mumbai    Male      67
3     Chamu   35    Chennai  Female     100
4  Jitendra   52  Bangalore    Male      87
5       Raj   34    Chennai    Male      89

 

 

 

Previous                                                 Next                                                 Home

No comments:

Post a Comment