Using
‘asType’ method, we can change the column type of a DataFrame.
Example
df['Age'] = df['Age'].astype('int')
Above snippet change the column type of ‘Age’ to int, It works only when the column Age do not have missing values.
change_column_type.py
import pandas as pd
import numpy as np
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, np.nan, 29, 41, 52, np.nan],
'City': ['Bangalore', None, 'Hyderabad', None, 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
print(df)
print('\nGet the DataFrame information')
df.info()
if df['Age'].hasnans == True:
print('\nFound missing values, replacing them with 0')
df['Age'].fillna(0, inplace=True)
print('\nSet the type of "age" column as int\n')
df['Age'].astype('int')
df.info()
Output
Name Age City 0 Krishna 34.0 Bangalore 1 Ram NaN None 2 Joel 29.0 Hyderabad 3 Gopi 41.0 None 4 Jitendra 52.0 Bangalore 5 Raj NaN Chennai Get the DataFrame information <class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Name 6 non-null object 1 Age 4 non-null float64 2 City 4 non-null object dtypes: float64(1), object(2) memory usage: 272.0+ bytes Found missing values, replacing them with 0 Set the type of "age" column as int <class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Name 6 non-null object 1 Age 6 non-null int64 2 City 4 non-null object dtypes: int64(1), object(2) memory usage: 272.0+ bytes
No comments:
Post a Comment