There are
two ways to select a column from a DataFrame
a. Using . notation
b. Using [] notation
Using . notation
Syntax
dataframe.columnName
Example
name_column = df.Name
Return type of name_column is a Series, you can confirm the same with the statement ‘type(name_column)’.
dataframe_column_select.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'My City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
print(df)
print('\nPrint Name column details')
name_column = df.Name
print(name_column)
print("\ntype : ", type(name_column))
Output
Name Age My City 0 Krishna 34 Bangalore 1 Ram 25 Chennai 2 Joel 29 Hyderabad 3 Gopi 41 Hyderabad 4 Jitendra 52 Bangalore 5 Raj 23 Chennai Print Name column details 0 Krishna 1 Ram 2 Joel 3 Gopi 4 Jitendra 5 Raj Name: Name, dtype: object type : <class 'pandas.core.series.Series'>
Drawback of . notation
If the column name has any spaces in it, we can’t access the column using . notation. For example, we can’t access the column ‘My City’ here.
Using [] notation
Syntax
Dataframe['columnName']
Example
my_city_column = df['My City']
dataframe_column_select_arrow_notation.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'My City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
print(df)
print('\nPrint "My City" column details')
my_city_column = df['My City']
print(my_city_column)
Output
Name Age My City 0 Krishna 34 Bangalore 1 Ram 25 Chennai 2 Joel 29 Hyderabad 3 Gopi 41 Hyderabad 4 Jitendra 52 Bangalore 5 Raj 23 Chennai Print "My City" column details 0 Bangalore 1 Chennai 2 Hyderabad 3 Hyderabad 4 Bangalore 5 Chennai Name: My City, dtype: object
No comments:
Post a Comment