DataFrame axes attribute returns a list of the axes objects used by the DataFrame, where the first element specifies the row index and the second element specifies the column index.
Example
axes = df.axes
row_axes = axes[0]
column_axes = axes[1]
Find the below working application.
dataframe_axes.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', 'Raj'],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
axes = df.axes
row_axes = axes[0]
column_axes = axes[1]
# Traverse the DataFrame rows
print("Traverse data frame by rows")
for row_index in row_axes:
print(df.iloc[row_index])
# Traverse the DataFrame using index and column access
print("\nTraverse the DataFrame using index and column access")
for i in range(len(df)):
row = df.iloc[i]
for column in column_axes:
print(column, " : ", row[column])
print("\n")
Output
Traverse data frame by rows Name Krishna Age 34 City Bangalore Name: 0, dtype: object Name Ram Age 25 City Chennai Name: 1, dtype: object Name Joel Age 29 City Hyderabad Name: 2, dtype: object Name Gopi Age 41 City Hyderabad Name: 3, dtype: object Name Jitendra Age 52 City Bangalore Name: 4, dtype: object Name Raj Age 23 City Chennai Name: 5, dtype: object Traverse the DataFrame using index and column access Name : Krishna Age : 34 City : Bangalore Name : Ram Age : 25 City : Chennai Name : Joel Age : 29 City : Hyderabad Name : Gopi Age : 41 City : Hyderabad Name : Jitendra Age : 52 City : Bangalore Name : Raj Age : 23 City : Chennai
No comments:
Post a Comment