In this post, I am going to explain how to create a new column by applying some transformations to the existing column.
To demonstrate the examples, I am using below dataset.
Name Age City 0 Krishna 34 Bangalore 1 Ram 25 Chennai 2 Joel 29 Hyderabad 3 Gopi 41 Hyderabad 4 Jitendra 52 Bangalore 5 Raj 23 Chennai
Example 1: Add new column Age_plus_10 to the DataSet
df['Age_plus_10'] = df['Age'] + 10
Above statement create new column ‘Age_plus_10’ by adding 10 to the existing column Age.
Example 2: Add new column Age_minus_10 to the DataSet
df['Age_minus_10'] = df['Age'].sub(10)
Above statement create new column ‘Age_minus_10’ by subtracting 10 to the existing column Age.
Example 3: Add new columns City_in_upper_case by converting the City to uppercase.
df['City_in_upper_case'] = df['City'].str.upper()
Find the below working application.
new_column_from_existing_column.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
print(df)
print('\nAdd new column Age_plus_10')
df['Age_plus_10'] = df['Age'] + 10
print(df)
print('\nAdd new column Age_minus_10')
df['Age_minus_10'] = df['Age'].sub(10)
print(df)
print('\nAdd new column City_in_upper_case')
df['City_in_upper_case'] = df['City'].str.upper()
print(df)
Output
Name Age City 0 Krishna 34 Bangalore 1 Ram 25 Chennai 2 Joel 29 Hyderabad 3 Gopi 41 Hyderabad 4 Jitendra 52 Bangalore 5 Raj 23 Chennai Add new column Age_plus_10 Name Age City Age_plus_10 0 Krishna 34 Bangalore 44 1 Ram 25 Chennai 35 2 Joel 29 Hyderabad 39 3 Gopi 41 Hyderabad 51 4 Jitendra 52 Bangalore 62 5 Raj 23 Chennai 33 Add new column Age_minus_10 Name Age City Age_plus_10 Age_minus_10 0 Krishna 34 Bangalore 44 24 1 Ram 25 Chennai 35 15 2 Joel 29 Hyderabad 39 19 3 Gopi 41 Hyderabad 51 31 4 Jitendra 52 Bangalore 62 42 5 Raj 23 Chennai 33 13 Add new column City_in_upper_case Name Age City Age_plus_10 Age_minus_10 City_in_upper_case 0 Krishna 34 Bangalore 44 24 BANGALORE 1 Ram 25 Chennai 35 15 CHENNAI 2 Joel 29 Hyderabad 39 19 HYDERABAD 3 Gopi 41 Hyderabad 51 31 HYDERABAD 4 Jitendra 52 Bangalore 62 42 BANGALORE 5 Raj 23 Chennai 33 13 CHENNAI
No comments:
Post a Comment