Dataframe index attribute specifies the index labels assigned to each row.
dataframe_index.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
# Access the index attribute
index_labels = df.index
print(index_labels)
Output
RangeIndex(start=0, stop=6, step=1)
The index attribute (df.index) returns a RangeIndex object, which represents the range of index labels from the start value (0) to the stop value (6) with a step of 1.
We can traverse the elements of DataFrame using RangeIndex.
range_index.py
import pandas as pd
# Create a sample DataFrame
data = {'Name': ['Krishna', 'Ram', 'Joel', 'Gopi', 'Jitendra', "Raj"],
'Age': [34, 25, 29, 41, 52, 23],
'City': ['Bangalore', 'Chennai', 'Hyderabad', 'Hyderabad', 'Bangalore', 'Chennai']}
df = pd.DataFrame(data)
# Access the index attribute
index_labels = df.index
print(index_labels)
print("\nTaverse the dataframe using RangIndex")
for index_label in index_labels:
row = df.loc[index_label]
print(row, "\n")
Output
RangeIndex(start=0, stop=6, step=1) Taverse the dataframe using RangIndex Name Krishna Age 34 City Bangalore Name: 0, dtype: object Name Ram Age 25 City Chennai Name: 1, dtype: object Name Joel Age 29 City Hyderabad Name: 2, dtype: object Name Gopi Age 41 City Hyderabad Name: 3, dtype: object Name Jitendra Age 52 City Bangalore Name: 4, dtype: object Name Raj Age 23 City Chennai Name: 5, dtype: object
In the above example, for loop iterates over the DataFrame RangeIndex. Inside the loop, df.loc[index_label] is used to access each row of the DataFrame by its index label index_label.
No comments:
Post a Comment