In this post, I am going to deep dive into the Pandas Series constructor.
Following table summarizes the parameters of Series constructor.
Parameter |
Description |
data |
Specifies the data that we want to include in the Series. data can be a Python list, NumPy array, dictionary, scalar value, or another Series. |
index |
Index argument allows you to specify custom labels for the elements of the series. |
dtype |
Specify the data type of the series |
copy |
If copy is set to True, then Pandas create a Series from an existing object by copying the data. 'copy' argument is set to Tru by default.
If copy is set to False, then the original data is shared with Series object, If you modify the original object, the it modifies the Series. |
name |
Set the name to a Pandas Series. |
data argument
We can specify the value to 'data' parameter directly in Series method.
series_from_list = pd.Series(data=[2, 3, 5, 7])
Mentioning the name ‘data’ is optional, following statement do the same.
series_from_list = pd.Series([2, 3, 5, 7])
data_argument.py
import pandas as pd
import numpy as np
# data can be a Python list, NumPy array, dictionary, scalar value, or another Series.
series_from_list = pd.Series([2, 3, 5, 7])
series_from_list_1 = pd.Series(data=[2, 3, 5, 7])
series_from_numpy_array = pd.Series(np.array([2, 3, 5, 7]))
series_from_dict = pd.Series({'FirstPrime' : 2, 'SecondPrime' : 3, 'ThirdPrime' : 5})
series_from_scalar = pd.Series(2)
series_from_another_series = pd.Series(series_from_list)
print('series_from_list:\n',series_from_list)
print('\nseries_from_list_1:\n',series_from_list_1)
print('\nseries_from_numpy_array:\n',series_from_numpy_array)
print('\nseries_from_dict:\n',series_from_dict)
print('\nseries_from_scalar:\n',series_from_scalar)
print('\nseries_from_another_series:\n',series_from_another_series)
Output
series_from_list: 0 2 1 3 2 5 3 7 dtype: int64 series_from_list_1: 0 2 1 3 2 5 3 7 dtype: int64 series_from_numpy_array: 0 2 1 3 2 5 3 7 dtype: int64 series_from_dict: FirstPrime 2 SecondPrime 3 ThirdPrime 5 dtype: int64 series_from_scalar: 0 2 dtype: int64 series_from_another_series: 0 2 1 3 2 5 3 7 dtype: int64
index argument
Example
data = [2, 3, 5, 7]
index = ['first_prime', 'second_prime', 'third_prime', 'fourth_prime']
series = pd.Series(data, index)
index_argument.py
import pandas as pd
data = [2, 3, 5, 7]
index = ['first_prime', 'second_prime', 'third_prime', 'fourth_prime']
series = pd.Series(data, index)
print(series)
Output
first_prime 2 second_prime 3 third_prime 5 fourth_prime 7 dtype: int64
dtype argument
Example 1: Data type is derived from the data by default
data = [2, 3, 5, 7]
index = ['first_prime', 'second_prime', 'third_prime', 'fourth_prime']
series1 = pd.Series(data, index)
In the above example, Pandas deduce data type as int64
first_prime 2 second_prime 3 third_prime 5 fourth_prime 7 dtype: int64
Example 2: Specify the data type explicitly.
series2 = pd.Series(data, index, dtype='float64')
In the above example, I set the data type as float64 explicitly.
dtype_argument.py
import pandas as pd
data = [2, 3, 5, 7]
index = ['first_prime', 'second_prime', 'third_prime', 'fourth_prime']
series1 = pd.Series(data, index)
series2 = pd.Series(data, index, dtype='float64')
print(series1,'\n')
print(series2)
copy argument
If copy is set to True, then Pandas create a Series from an existing object by copying the data.
If copy is set to False, then the original data is shared with Series object, If you modify the original object, the it modifies the Series.
name argument
name_argument.py
import pandas as pd
series_1 = pd.Series([2, 3, 5, 7, 11], name='five_primes')
print(series_1)
Output
0 2 1 3 2 5 3 7 4 11 Name: five_primes, dtype: int64
No comments:
Post a Comment