A Pandas series index label can point to multiple values.
For example,
primes = [2, 3, 5, 7, 11, 13, 17]
primes_index = ['A', 'B', 'C', 'D', 'A', 'B', 'A']
primes_series = pd.Series(primes, index=primes_index)
In the above snippet, primes_series holds below data.
A 2 B 3 C 5 D 7 A 11 B 13 A 17 dtype: int64
From the above snippet, you can confirm that the index label ‘A’ point to three values 2, 11 and 17.
When you access the values associated with the index label ‘A’, Pandas return a series.
associated_with_index_a = primes_series['A']
‘associated_with_index_a’ point to below data.
A 2 A 11 A 17 dtype: int64
Find the below working application.
index_can_hold_multiple_values.py
import pandas as pd
primes = [2, 3, 5, 7, 11, 13, 17]
primes_index = ['A', 'B', 'C', 'D', 'A', 'B', 'A']
primes_series = pd.Series(primes, index=primes_index)
print('primes_series')
print(primes_series)
associated_with_index_a = primes_series['A']
print('\nassociated_with_index_a')
print(associated_with_index_a)
print('\ntype of associated_with_index_a', type(associated_with_index_a))
associated_with_index_c = primes_series['C']
print('\nassociated_with_index_c')
print(associated_with_index_c)
print('\ntype of associated_with_index_c', type(associated_with_index_c))
Output
primes_series A 2 B 3 C 5 D 7 A 11 B 13 A 17 dtype: int64 associated_with_index_a A 2 A 11 A 17 dtype: int64 type of associated_with_index_a <class 'pandas.core.series.Series'> associated_with_index_c 5 type of associated_with_index_c <class 'numpy.int64'>
No comments:
Post a Comment