Thursday, 1 October 2015

openNLP: Tokenizer training

You can train a model to identify tokenizers using command line interface, API.

Using CLI (Command Line Interface):
opennlp provides 'TokenizerTrainer' tool to train data. The OpenNLP format contains one sentence per line. You can also specify tokens either separated by a whitespace or by a special <SPLIT> tag.

To get help for 'TokenizerTrainer' run the command 'opennlp TokenizerTrainer'.

$ opennlp TokenizerTrainer
Usage: opennlp TokenizerTrainer[.ad|.pos|.conllx|.namefinder|.parse] [-factory factoryName] [-abbDict path] [-alphaNumOpt isAlphaNumOpt] [-params paramsFile] -lang language -model modelFile -data sampleData [-encoding charsetName]

Arguments description:
 -factory factoryName
  A sub-class of TokenizerFactory where to get implementation and resources.
 -abbDict path
  abbreviation dictionary in XML format.
 -alphaNumOpt isAlphaNumOpt
  Optimization flag to skip alpha numeric tokens for further tokenization
 -params paramsFile
  training parameters file.
 -lang language
  language which is being processed.
 -model modelFile
  output model file.
 -data sampleData
  data to be used, usually a file name.
 -encoding charsetName
  encoding for reading and writing text, if absent the system default is used.

Following command takes training data from input.txt and generates ‘token_model.bin’ file.

opennlp TokenizerTrainer -model token_model.bin -alphaNumOpt false -lang en -data input.txt -encoding UTF-8

 ‘input.txt’ contains following data.

Hari krishna Gurram<SPLIT>, 27 years old<SPLIT>, is a software Engineer<SPLIT> joined xyz organization.
Mr. Ananad Bandaru <SPLIT> is the project manager,<SPLIT> team size 10<SPLIT>.


$ opennlp TokenizerTrainer -model ./token_model.bin -alphaNumOpt false -lang en -data ./input.txt -encoding UTF-8
Indexing events using cutoff of 5

 Computing event counts...  done. 94 events
 Indexing...  done.
Sorting and merging events... done. Reduced 94 events to 89.
Done indexing.
Incorporating indexed data for training...  
done.
 Number of Event Tokens: 89
     Number of Outcomes: 2
   Number of Predicates: 30
...done.
Computing model parameters ...
Performing 100 iterations.
  1:  ... loglikelihood=-65.15583497263488 0.9680851063829787
  2:  ... loglikelihood=-27.919978747347933 0.9680851063829787
  3:  ... loglikelihood=-18.830459832857034 0.9680851063829787
  4:  ... loglikelihood=-15.404986758262185 0.9680851063829787
  5:  ... loglikelihood=-13.72901035449004 0.9680851063829787
  6:  ... loglikelihood=-12.736402318032512 0.9680851063829787
  7:  ... loglikelihood=-12.058379907327403 0.9680851063829787
  8:  ... loglikelihood=-11.546862469089756 0.9680851063829787
  9:  ... loglikelihood=-11.135581655830746 0.9680851063829787
 10:  ... loglikelihood=-10.79190969013221 0.9787234042553191
 11:  ... loglikelihood=-10.49809101645788 0.9787234042553191
 12:  ... loglikelihood=-10.243346245232049 0.9787234042553191
 13:  ... loglikelihood=-10.020385951866078 0.9787234042553191
 14:  ... loglikelihood=-9.823823683852883 0.9787234042553191
 15:  ... loglikelihood=-9.649432894870161 0.9680851063829787
 16:  ... loglikelihood=-9.493781940674689 0.9680851063829787
 17:  ... loglikelihood=-9.354037635587453 0.9680851063829787
 18:  ... loglikelihood=-9.227844090785963 0.9680851063829787
 19:  ... loglikelihood=-9.113236646005166 0.9680851063829787
 20:  ... loglikelihood=-9.008574348661416 0.9680851063829787
 21:  ... loglikelihood=-8.912484387352526 0.9680851063829787
 22:  ... loglikelihood=-8.823815723133473 0.9680851063829787
 23:  ... loglikelihood=-8.741600464033226 0.9680851063829787
 24:  ... loglikelihood=-8.665021902495617 0.9680851063829787
 25:  ... loglikelihood=-8.593388239589714 0.9680851063829787
 26:  ... loglikelihood=-8.526111085322134 0.9680851063829787
 27:  ... loglikelihood=-8.46268790979203 0.9680851063829787
 28:  ... loglikelihood=-8.402687724984585 0.9680851063829787
 29:  ... loglikelihood=-8.345739388224226 0.9680851063829787
 30:  ... loglikelihood=-8.291522024176455 0.9680851063829787
 31:  ... loglikelihood=-8.239757156276054 0.9680851063829787
 32:  ... loglikelihood=-8.190202218191189 0.9680851063829787
 33:  ... loglikelihood=-8.142645181598036 0.9680851063829787
 34:  ... loglikelihood=-8.096900089605423 0.9680851063829787
 35:  ... loglikelihood=-8.052803327557944 0.9680851063829787
 36:  ... loglikelihood=-8.010210496588895 0.9680851063829787
 37:  ... loglikelihood=-7.968993781919306 0.9680851063829787
 38:  ... loglikelihood=-7.929039728962359 0.9680851063829787
 39:  ... loglikelihood=-7.890247356978089 0.9680851063829787
 40:  ... loglikelihood=-7.852526553274457 0.9680851063829787
 41:  ... loglikelihood=-7.81579670150884 0.9680851063829787
 42:  ... loglikelihood=-7.7799855060881375 0.9680851063829787
 43:  ... loglikelihood=-7.745027981445366 0.9680851063829787
 44:  ... loglikelihood=-7.710865580437717 0.9680851063829787
 45:  ... loglikelihood=-7.677445440537027 0.9680851063829787
 46:  ... loglikelihood=-7.644719730081948 0.9680851063829787
 47:  ... loglikelihood=-7.6126450797987175 0.9680851063829787
 48:  ... loglikelihood=-7.581182087204402 0.9680851063829787
 49:  ... loglikelihood=-7.55029488348716 0.9680851063829787
 50:  ... loglikelihood=-7.519950754092984 0.9680851063829787
 51:  ... loglikelihood=-7.490119805603684 0.9680851063829787
 52:  ... loglikelihood=-7.460774672617553 0.9680851063829787
 53:  ... loglikelihood=-7.431890259284192 0.9680851063829787
 54:  ... loglikelihood=-7.403443510932034 0.9680851063829787
 55:  ... loglikelihood=-7.375413211887318 0.9680851063829787
 56:  ... loglikelihood=-7.347779806140007 0.9680851063829787
 57:  ... loglikelihood=-7.320525237981628 0.9680851063829787
 58:  ... loglikelihood=-7.29363281013785 0.9680851063829787
 59:  ... loglikelihood=-7.267087057256732 0.9680851063829787
 60:  ... loglikelihood=-7.240873632900681 0.9680851063829787
 61:  ... loglikelihood=-7.214979208436198 0.9680851063829787
 62:  ... loglikelihood=-7.189391382424853 0.9680851063829787
 63:  ... loglikelihood=-7.164098599299557 0.9680851063829787
 64:  ... loglikelihood=-7.139090076264654 0.9680851063829787
 65:  ... loglikelihood=-7.11435573749169 0.9680851063829787
 66:  ... loglikelihood=-7.0898861547979495 0.9680851063829787
 67:  ... loglikelihood=-7.065672494094207 0.9680851063829787
 68:  ... loglikelihood=-7.041706466974542 0.9680851063829787
 69:  ... loglikelihood=-7.017980286895933 0.9680851063829787
 70:  ... loglikelihood=-6.994486629460506 0.9680851063829787
 71:  ... loglikelihood=-6.971218596370116 0.9680851063829787
 72:  ... loglikelihood=-6.948169682672612 0.9680851063829787
 73:  ... loglikelihood=-6.925333746962407 0.9680851063829787
 74:  ... loglikelihood=-6.902704984236104 0.9680851063829787
 75:  ... loglikelihood=-6.880277901137151 0.9680851063829787
 76:  ... loglikelihood=-6.858047293352859 0.9680851063829787
 77:  ... loglikelihood=-6.836008224953014 0.9680851063829787
 78:  ... loglikelihood=-6.814156009481834 0.9680851063829787
 79:  ... loglikelihood=-6.792486192635316 0.9680851063829787
 80:  ... loglikelihood=-6.7709945363736495 0.9680851063829787
 81:  ... loglikelihood=-6.749677004334072 0.9680851063829787
 82:  ... loglikelihood=-6.728529748423526 0.9680851063829787
 83:  ... loglikelihood=-6.70754909648284 0.9680851063829787
 84:  ... loglikelihood=-6.686731540925016 0.9680851063829787
 85:  ... loglikelihood=-6.66607372826015 0.9680851063829787
 86:  ... loglikelihood=-6.645572449428095 0.9680851063829787
 87:  ... loglikelihood=-6.6252246308677805 0.9680851063829787
 88:  ... loglikelihood=-6.605027326259023 0.9680851063829787
 89:  ... loglikelihood=-6.584977708878869 0.9680851063829787
 90:  ... loglikelihood=-6.565073064520063 0.9680851063829787
 91:  ... loglikelihood=-6.545310784924165 0.9680851063829787
 92:  ... loglikelihood=-6.525688361686311 0.9680851063829787
 93:  ... loglikelihood=-6.5062033805926305 0.9680851063829787
 94:  ... loglikelihood=-6.486853516354962 0.9680851063829787
 95:  ... loglikelihood=-6.46763652771055 0.9680851063829787
 96:  ... loglikelihood=-6.448550252857571 0.9680851063829787
 97:  ... loglikelihood=-6.429592605199842 0.9680851063829787
 98:  ... loglikelihood=-6.4107615693763105 0.9680851063829787
 99:  ... loglikelihood=-6.392055197553354 0.9680851063829787
100:  ... loglikelihood=-6.373471605959484 0.9680851063829787
Writing tokenizer model ... done (0.013s)

Wrote tokenizer model to
path: /Users/harikrishna_gurram/study1/OpenNLP/apache-opennlp-1.6.0/bin/models/./token_model.bin


Using Java Training API
Following is the complete working application.

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.charset.Charset;
import java.util.Objects;

import opennlp.tools.dictionary.Dictionary;
import opennlp.tools.tokenize.TokenSample;
import opennlp.tools.tokenize.TokenSampleStream;
import opennlp.tools.tokenize.TokenizerFactory;
import opennlp.tools.tokenize.TokenizerME;
import opennlp.tools.tokenize.TokenizerModel;
import opennlp.tools.util.MarkableFileInputStreamFactory;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import opennlp.tools.util.TrainingParameters;

public class TokenizerTrainer {
 /**
  * @param inputFile
  *            contains training data
  * @param modelFile
  *            Generated model file after training
  * @throws IOException
  */

 public static void trainModel(String inputFile, String modelFile)
   throws IOException {
  Objects.nonNull(inputFile);
  Objects.nonNull(modelFile);

  Charset charset = Charset.forName("UTF-8");

  MarkableFileInputStreamFactory factory = new MarkableFileInputStreamFactory(
    new File(inputFile));
  ObjectStream<String> lineStream = new PlainTextByLineStream(factory,
    charset);
  ObjectStream<TokenSample> sampleStream = new TokenSampleStream(
    lineStream);

  TokenizerModel model;

  try {
   TokenizerFactory tokenizerFactory = new TokenizerFactory("en",
     new Dictionary(), false, null);

   model = TokenizerME.train(sampleStream, tokenizerFactory,
     TrainingParameters.defaultParams());
  } finally {
   sampleStream.close();
  }

  OutputStream modelOut = null;
  try {
   modelOut = new BufferedOutputStream(new FileOutputStream(modelFile));
   model.serialize(modelOut);
  } finally {
   if (modelOut != null)
    modelOut.close();
  }

 }
}


import java.io.IOException;

public class Main {
 public static void main(String args[]) throws IOException {
  String inputFile = "/Users/harikrishna_gurram/input.txt";
  String modelFile = "/Users/harikrishna_gurram/model_sample";
  
  TokenizerTrainer.trainModel(inputFile, modelFile);
 }
}



Prevoius                                                 Next                                                 Home

No comments:

Post a Comment